首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11812篇
  免费   1355篇
  国内免费   565篇
电工技术   928篇
综合类   1032篇
化学工业   2063篇
金属工艺   818篇
机械仪表   674篇
建筑科学   1021篇
矿业工程   474篇
能源动力   263篇
轻工业   374篇
水利工程   456篇
石油天然气   675篇
武器工业   42篇
无线电   1143篇
一般工业技术   1384篇
冶金工业   351篇
原子能技术   506篇
自动化技术   1528篇
  2024年   23篇
  2023年   184篇
  2022年   209篇
  2021年   402篇
  2020年   367篇
  2019年   275篇
  2018年   295篇
  2017年   367篇
  2016年   510篇
  2015年   559篇
  2014年   818篇
  2013年   927篇
  2012年   885篇
  2011年   931篇
  2010年   710篇
  2009年   702篇
  2008年   700篇
  2007年   691篇
  2006年   682篇
  2005年   559篇
  2004年   491篇
  2003年   455篇
  2002年   387篇
  2001年   293篇
  2000年   257篇
  1999年   178篇
  1998年   149篇
  1997年   150篇
  1996年   108篇
  1995年   89篇
  1994年   59篇
  1993年   67篇
  1992年   49篇
  1991年   30篇
  1990年   25篇
  1989年   24篇
  1988年   29篇
  1987年   12篇
  1986年   11篇
  1985年   22篇
  1984年   16篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1959年   2篇
  1958年   2篇
  1955年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
摘 要:核心网业务模型的建立是5G网络容量规划和网络建设的基础,通过现有方法得到的理论业务模型是静态不可变的且与实际网络存在偏离。为了克服现有5G核心网业务模型与现网模型适配性较差以及规划设备无法满足用户实际业务需求的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与卷积LSTM (convolution LSTM,ConvLSTM)网络双通道融合的 5G 核心网业务模型预测方法。该方法基于人工智能(artificial intelligence,AI)技术以实现高质量的核心网业务模型的智能预测,形成数据反馈闭环,实现网络自优化调整,助力网络智能化建设。  相似文献   
2.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
3.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
4.
In this work, a new type of FeSi/FeNi soft magnetic powder core (SMPC) was successfully fabricated by coating FeNi nanoparticles on the surface of FeSi micrometer powder. The effects of different contents of FeNi nanoparticles on the micromorphology, internal structures, and soft magnetic properties of SMPCs were studied. The results show that FeNi nanoparticles adhere to the surface of FeSi powder, which can effectively fill the air gap between FeSi powder and is beneficial to the compaction of the powder cores during the pressing process. Thus, the density of the SMPCs is increased. Compared to FeSi SMPCs, the comprehensive soft magnetic properties of FeSi/FeNi SMPCs have been greatly improved. When adding 15 wt% FeNi nanoparticles, the SMPCs exhibit excellent magnetic properties with high effective permeability (increased by 43.8 %) and low core loss (decreased by 22.1 %). The high performance FeSi/FeNi SMPCs prepared in this work are expected to be widely used in power choke coils, uninterruptible power supplies, and boosts and inverter inductors.  相似文献   
5.
《Ceramics International》2022,48(6):7593-7604
The ceramic core, produced by hot injection molding, is one of the critical components for manufacturing high-performance aircraft engine turbine blades. However, the injection molding process will cause defects such as burrs and flashes in the fine structure of the formed ceramic core. Manual trimming is necessary, but the trimming quality is poor, and the yield is low. In this paper, the online trimming method of ceramic cores is studied. Based on the orthogonal experiment method, the optimal laser parameters for processing the ceramic core's porous multi-scale particle structure material were obtained. Further, the problems of the match head and tail phenomenon and dimensional accuracy improvement in trimming ceramic cores have been studied. A path optimisation method is proposed to improve the quality and accuracy of the trimming profile effectively. Finally, the overall process flow of ceramic core trimming is elaborated, and experimental verification is given. The results show that the ceramic core online trimming method proposed in this paper has advantages of high precision and high yield compared with the manual method, which will have substantial potential application value in the aviation field.  相似文献   
6.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
7.
传统的堆芯功率PID控制器是基于单一功率水平处的堆芯局部模型设计的,难以准确描述整个堆芯功率水平范围的控制。因此,本文基于5个不同功率水平下的传递函数模型,通过三角隶属度函数加权,建立堆芯模糊多模型,并依据该模型设计堆芯功率模糊PID控制。以TMI型压水堆堆芯为对象,开展不同初始功率水平下的堆芯功率跟踪、堆芯进口温度扰动的控制仿真。结果表明,基于模糊多模型设计的堆芯功率模糊PID控制器可实现对堆芯功率的良好控制。  相似文献   
8.
Liquid marble (LM) is a droplet that is wrapped by hydrophobic solid particles, which behave as a non-wetting soft solid. Based on these properties, LM can be applied in fluidics and soft device applications. A wide variety of functional particles have been synthesized to form functional LMs. However, the formation of multifunctional LMs by integrating several types of functional particles is challenging. Here, a general strategy for the flexible patterning of functional particles on droplet surfaces in a patchwork-like design is reported. It is shown that LMs can switch their macroscopic behavior between a stable and active state on super-repellent surfaces in situ by jamming/unjamming the surface particles. Active LMs hydrostatically coalesce to form a self-sorted particle pattern on the droplet surface. With the support of LM handling robotics, on-demand cyclic activation–manipulation–coalescence–stabilization protocols by LMs with different sizes and particle types result in the reliable design of multi-faced LMs. Based on this concept, a single bi-functional LM is designed from two mono-functional LMs as an advanced droplet carrier.  相似文献   
9.
Interest in developing high-performance blends for niche applications has grown significantly in efforts to meet ever-increasing harsh environment demands. In this work, four model poly(aryl-ether-ketone)/polybenzimidazole (PAEK/PBI) blends were chosen to study the influence of premixing methods, processing, and matrix polymers, on their mechanical properties. Among the model poly(ether ether ketone) (PEEK) and PBI blends, mechanical properties are greatly enhanced by melt premixing. The molding process mainly affects the matrix crystallinity, which in turn greatly influences fracture toughness of the blend. Poly(ether ketone ketone) (PEKK) and PBI blend exhibits a slightly lower tensile strength and fracture toughness than PEEK/PBI due to the differences in inherent properties of PEEK and PEKK matrices and their interfacial interaction with PBI. The processing−structure–property relationship of PAEK/PBI blends is established to help guide optimal design of high-performance polymer blends for structural applications. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48966.  相似文献   
10.
Among various drug-delivery systems, core-shell nanoparticles have many advantages. Inspired by nature, biomimetic synthesis has emerged as a new strategy for making core-shell nanoparticles in recent years. Biomimetic mineralization is the process by which living organisms produce minerals based on biomolecule templating that leads to the formation of hierarchically structured organic–inorganic materials. In this minireview, we mainly focus on the synthesis of core-shell nanoparticle drug-delivery systems by biomimetic mineralization. We review various biomimetic mineralization methods for fabricating core-shell nanoparticles including silica-based, calcium-based and other nanoparticles, and their applications in drug delivery. We also summarize strategies for drug loading in the biomolecule-mineralized core-shell NPs. Current challenges and future directions are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号